Continuation of Invariant Subspaces for Parameterized Quadratic Eigenvalue Problems

نویسندگان

  • Wolf-Jürgen Beyn
  • Vera Thümmler
چکیده

We consider quadratic eigenvalue problems with large and sparse matrices depending on a parameter. Problems of this type occur, for example, in the stability analysis of spatially discretized and parameterized nonlinear wave equations. The aim of the paper is to present and analyze a continuation method for invariant subspaces that belong to a group of eigenvalues the number of which is much smaller than the dimension of the system. The continuation method is of predictor-corrector type similar to the approach for the linear eigenvalue problem in [5], but we avoid linearizing the problem which will double the dimension and change the sparsity pattern. The matrix equations that occur in the predictor and the corrector step are solved by a bordered version of the Bartels-Stewart algorithm. Furthermore, we set up an update procedure that handles the transition from real to complex conjugate eigenvalues which occur when eigenvalues from inside the continued cluster collide with eigenvalues from outside. The method is demonstrated on several numerical examples: a homotopy between random matrices, a fluid conveying pipe problem, and a traveling wave of a damped wave equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuation of low-dimensional invariant subspaces in dynamical systems of large dimension

We present a continuation method for low-dimensional invariant subspaces of a parameterized family of large and sparse real matrices. Such matrices typically occur when linearizing about branches of steady states in dynamical systems that are obtained by spatial discretization of timedependent PDE’s. The main interest is in subspaces that belong to spectral sets close the imaginary axis. Our co...

متن کامل

Continuation of eigenvalues and invariant pairs for parameterized nonlinear eigenvalue problems

Invariant pairs have been proposed as a numerically robust means to represent and compute several eigenvalues along with the corresponding (generalized) eigenvectors for matrix eigenvalue problems that are nonlinear in the eigenvalue parameter. In this work, we consider nonlinear eigenvalue problems that depend on an additional parameter and our interest is to track several eigenvalues as this ...

متن کامل

Identification of Interacting Power System Dynamic Phenomena via Continuation of Invariant Subspaces

This paper will focus on identifying the interacting dynamic phenomena in power systems by using continuation of invariant subspaces (CIS). With this approach one can trace the trajectory of different oscillatory modes as system parameter changes. Many power system dynamic phenomena, such as strong resonance, subsynchronous resonance (SSR) et al., are related to the interaction of oscillatory m...

متن کامل

Numerical Solution of Quadratic Eigenvalue Problems with Structure-Preserving Methods

Numerical methods for the solution of large scale structured quadratic eigenvalue problems are discussed. We describe a new extraction procedure for the computation of eigenvectors and invariant subspaces of skew-Hamiltonian/Hamiltonian pencils using the recently proposed skew-Hamiltonian isotropic implicitly restarted Arnoldi method (SHIRA). As an application we discuss damped gyroscopic syste...

متن کامل

Symplectic, BVD, and Palindromic Approaches to Discrete-Time Control Problems¶

We give several different formulations for the discrete-time linear-quadratic control problem in terms of structured eigenvalue problems, and discuss the relationships among the associated structured objects: symplectic matrices and pencils, BVD-pencils and polynomials, and the recently introduced classes of palindromic pencils and matrix polynomials. We show how these structured objects can be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2009